

VDO, the transparent
deduplication/compression layer
July 2018 @tlug.jp

Christian Horn / chorn@fluxcoil.net

mailto:chorn@fluxcoil.net

VDO | Christian Horn2

Agenda

● whoami
● The basics of VDO
● Use cases: where can VDO help?
● VDO setup and configuration
● How is VDO influencing read/write performance?
● How much storage space can I save for my use

cases?

Let’s find out!

333 VDO | Christian Horn

whoami

● Born in East Germany, 12 years

before German unification
● 15 years in Munich, did many

things around Linux. Worked 5 years

as TAM at Red Hat Germany.
● Since 2016: AMC TAM at

Red Hat Japan

VDO | Christian Horn4

Ever felt like you have to much storage?
● Rather not, there is no ‘too much storage’
● Since a long time we use userland gzip and rar for

compression – with Virtual Data Optimizer (VDO),
RHEL7.5 got now a transparent
compression/deduplication layer

● VDO comes from the Permabit acquisition 2017
● code is available in source RPMs, but we are not in

upstream → kernel gets tainted
● upstream projects are getting established now (as per

upstream first policy)
● PerformanceCoPilot (PCP)

added VDO metrics in version 4.0.0 , in Feb. 2018.
bz1565370 is open bringing it into RHEL7.6

https://github.com/dm-vdo
https://github.com/performancecopilot/pcp/blob/master/CHANGELOG
https://bugzilla.redhat.com/show_bug.cgi?id=1565370

VDO | Christian Horn5

/dev/sda

xfs
VDO

files

disk

The layers with VDO

VDO and file system

● The plain system uses the disk
directly as block device.

● VDO has typically a thin provisioned device
● Copies are mostly deduplicated
● Plus compression, removing zeros

plain file system

VDO | Christian Horn6

[*] graphic from http://permabit.com/cloud-economics-drive-the-it-infrastructure-of-tomorrow-2/

[*]

(1) Unmodified data

(2) Reduce zero blocks

(3) Deduplicate

(4) Compress with lz4

VDO | Christian Horn7

VDO and the system layers

VDO | Christian Horn8

Where is VDO useful?

● For example under local file systems, iSCSI or Ceph
● on file servers as base for local file systems, handing out

NFS, CIFS or Gluster services
● Remember nfs-root? Dozens of Linux systems sharing

read only NFS root file systems to save storage? You can
now give each of these systems an own individual image
via iSCSI, store then on a VDO backend, and have VDO
deduplicate/compress the common parts of the images.

VDO | Christian Horn9

VDO installation.. easy!

● Normal RHEL7.5 repos should be available (extras,
optional channels not required)

● Installation:

 [root@rhel7u5a ~]# yum install vdo kmod-kvdo

● Authoritative docs: The Storage Administration Guide

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/storage_administration_guide/index#vdo

VDO | Christian Horn10

Configuring VDO devices: the 3 write modes

● (3) ‘auto’ mode: the default, selects ‘async’ or ‘sync’ based on
capabilities of the underlying storage. If ‘auto’ puts you into ‘sync’ you
are safe – unless your drive reports capabilities incorrectly, in that
case you can manually choose ‘sync’. In all other cases, the only safe
mode is ‘async’.

• (1) ‘sync’ mode: writes to the VDO device are
acked when the underlying storage has written
the data permanently. Data is here first written,
then dedup/compression are done.

• (2) ‘async’ mode: writes are acknowledged
before being written to persistent storage. VDO
obeys flush requests from the layers above also
in async mode. So also async mode can safely
deal with your data - equivalent to other devices
with volatile write back caches.

VDO | Christian Horn11

Configuring VDO devices, simple example

● Let’s create a VDO device on top of disk /dev/sdc. For a 10GB disk, depending on
workload, one could decide to have VDO offer 100GB to the upper layers:

$ vdo create --name=vdoas --device=/dev/sdc \

 --vdoLogicalSize=100G --writePolicy=async

Creating VDO vdoas

Starting VDO vdoas

Starting compression on VDO vdoas

VDO instance 0 volume is ready at /dev/mapper/vdoas

$ mkfs.xfs -K /dev/mapper/vdoas

[..]

$ mount /dev/mapper/vdoas /mnt

$ cp -r /tmp/data /mnt/file

VDO | Christian Horn12

Configuring VDO devices, considerations

● Don’t just stuff VDO ‘somewhere’, read
Storage Admin Guide: VDO requirements first.

● For example, placing VDO below encryption layers like
LUKS makes no sense: if you can deduplicate and
compress that, it means your crypto has issues..

● For playing, 2GB RAM KVM guest is a good start. Production
RAM requirements depend on the size of your blockdevice
below VDO.

● Some part of the block device gets reserved and used for
VDO: usually 3-4GB. Negligible in enterprise environments.

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/storage_administration_guide/index#vdo-qs-requirements

VDO | Christian Horn13

VDO performance impact?

The work flow:

● Create file system on VDO devices, and on plain LVM volumes:

 $ mkfs.xfs -K -f /dev/mapper/vdo

 $ mkfs.xfs -K -f /dev/vg0/lvplain
● Mount:

 $ mount /dev/mapper/vdo /mnt/vdo

 $ mount /dev/vg0/plain /mnt/plain
● Measure time of deployment, and copy:

 $ /usr/bin/time -f ‘%e’ cp -r /dev/shm/dir_5gb /mnt/vdo

 $ /usr/bin/time -f ‘%e’ sync

 $ /usr/bin/time -f ‘%e’ cp -r /mnt/vdo/dir_5gb /mnt/vdo/dir_5gb_copy

 $ /usr/bin/time -f ‘%e’ sync
● Results on the next slide..

VDO | Christian Horn14

VDO performance impact?

File system backend Deploy to
file system

Copy on
file system

XFS onto of normal LVM volume 28 sec 35 sec

XFS on VDO device, async mode 55 sec 58 sec

XFS on VDO device, sync mode 71 sec 92 sec

● Writes to VDO are slower than to plain backend. Backend here was harddisk, with
for example SSD as backend, the impact is lower.

● Same for copies on VDO: that data is duplicate, first gets written and then
recognized as duplicate. VDO works in kernel land, unaware of above layers. So
userland ‘cp’ is not telling it ‘this is a duplicate’.

● ‘tar’ has interesting features: ‘tar cf /dev/null /dir’ is not doing what one might expect

VDO | Christian Horn15

● Monitor actual fill state: ‘vdostats –verbose’. Example for a 50GB volume:

 .

 [root@rhel7u5 ~]# vdostats \

 > --verbose /dev/mapper/vdoasync | \

 > grep -B6 'saving percent'

 physical blocks : 13107200

 logical blocks : 26214400

 1K-blocks : 5242880

 1K-blocks used : 4227396

 1K-blocks available : 48201404

 used percent : 8

 saving percent : 99

How much storage can I save?

Volume fill state

Size of the backend blockdevice,
13.107.200 blocks * 4k byte = 50GB

How much do we show to upper layers,
26.214.400 blocks * 4k byte = 100GB
→ thin provisioned VDO volume

1k blocks the VDO volume can use

1k blocks internally used. Right after
VDO creation ~4GB are in use.

1k blocks available, here 45.9GB

● We are dealing with compression/deduplication here. So while we have 45.9GB available
in VDO, if we store nicely deduplicatable data, this is more data on the file system layer.

VDO | Christian Horn16

How much storage can I save?

Let’s make a copy of 13GB of data on top of VDO/XFS.

cp -r /mnt/vdo0/dir13gb /mnt/vdo0/copy

13GB of data on file system layer, but occupies just ~120MB for VDO. Thanks, dedup! :)

$ df -h /mnt/vdo0/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vdoas 100G 13G 88G 13% /mnt/vdo0

$ vdostats --human /dev/mapper/vdoas

Device Size Used Available Use% Space saving%

/dev/mapper/vdoas 50.0G 16.3G 33.7G 32% 4%

$ df -h /mnt/vdo0/

Filesystem Size Used Avail Use% Mounted on

/dev/mapper/vdoas 100G 26G 75G 26% /mnt/vdo0

$ vdostats --human /dev/mapper/vdoas

Device Size Used Available Use% Space saving%

/dev/mapper/vdoas 50.0G 16.3G 33.7G 32% 52%

VDO | Christian Horn17

Give me compression numbers!

● Note: this is for example data, not data from your environments.
● We created a 25GB sparse file, and VDO/XFS on top. Right after

creation, VDO uses 4.2GB. Let’s then copy the data in:

data.tar on a normal file system 16.8GB gutenberg.org text files

datasize on VDO
(according to vdostats)

14.8GB Took 608 sec on 4 cores/10GB
RAM KVM guest, loopback

size of VDO-sparsefile 15.9GB

size gzip(data.tar) 8.0GB Took 992 sec on 1 core/10GB
RAM KVM guest

VDO | Christian Horn18

Saving storage, illustrated
● Let’s copy data to a device backed by harddisk, and then create copies:

● Yellow: plain backend finishes first – we already know that from earlier tests.

● Violet and green lines are the blocks used by our data on VDO devices. Async and sync mode are similar in this aspect.

● Both VDO volumes start with reporting ‘0 bytes occupied’ via the ‘df’ command, but right from the start some blocks are
used internally. For the VDO backends, the initial copy takes ~50 seconds, then the copies on top of VDO start. Due to
deduplication, almost no further blocks get used at that time, but ‘used bytes’ as reported by the file system layer grows

VDO | Christian Horn19

Takeaways

● Deduplication is very impressive, if applicable to your data. If
compression does not help with your data, it can be disabled.
Compression rates are lower than when using gzip/xv.

● I/O is not improving from the applications point of view. When VDO
sees a potential duplicate, it does a read verification to be sure –
this takes time.

● VDO is designed for high performance in environments with random
I/O, so using VDO as shared storage with multiple tasks on top
doing I/O. Especially use cases like running multiple VMs on a
single VDO volume let VDO shine.

● Use ‘vdostats’ for monitoring VDO device fill state: they should not
fill up

● When benchmarking: carefully consider whether loopback devices
and KVM change results. They are fine for comparing compression
rates, but not for comparing I/O.

VDO | Christian Horn20

Conclusion and links

● Video
Block Deduplication and Compression with VDO
from Devconf 2018 is highly recommended.

● ‘man vdo’ has details regarding many tuning options
like read caches. Extra tuning recommended for SSD
and Nvram backends. The
VDO section in the Storage Admin guide got recently
extended with more details and a tuning section.

https://www.youtube.com/watch?v=7CGr5LEAfRY
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html-single/storage_administration_guide/#vdo

Thank you!
どうもありがとうございました！
Спасибо!
Danke!

Christian Horn / chorn@fluxcoil.net

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

